

JAWAHARLAL NEHRUTECHNOLOGICALUNIVERSITY: KAKINADA

KAKINADA-533003, Andhra Pradesh, India

R-13 Syllabus for ECE.JNTUK

III Year-IISemester	T	P	С
	4	0	3

DIGITAL COMMUNICATION (RT32043)

PrerequisiteCourse:

Analog communication

CourseDescriptionandObjectives:

- understand pulse digital modulation systems such as PCM,DPCM and DM.
- understand various digital modulation techniques and able to analyze various systems for their performance in terms of probability of error.
- study the concept of entropy and need for source coding.
- study Block codes, cyclic codes and convolution codes.

CourseOutcomes:

Upon completion of the course, the student will be able to achieve the following outcomes.

Cos	CourseOutcomes	POs
1	Determine the performance of different waveform coding techniques for	3
2	Determine the probability of error for various digital modulation schemes	3
3	Analyze different source coding techniques	3
4	Compute and analyze different error control coding schemes for the	3

Syllabus:

UNIT I

PULSE DIGITAL MODULATION: Elements of digital communication systems, advantages of digital communication systems, Elements of PCM: Sampling, Quantization & Coding, Quantization error, Companding in PCM systems. Differential PCM systems (DPCM). Delta modulation, its draw backs, adaptive delta modulation, comparison of PCM and DM systems, noise in PCM and DM systems.

UNIT II

DIGITAL MODULATION TECHNIQUES: Introduction, ASK, FSK, PSK, DPSK, DEPSK, QPSK, M-ary PSK, ASK, FSK, similarity of BFSK and BPSK.

UNIT III

DATA TRANSMISSION: Base band signal receiver, probability of error, the optimum filter, matched filter, probability of error using matched filter, coherent reception, non-coherent detection of FSK, calculation of error probability of ASK, BPSK, BFSK, QPSK.

TINIT ÎV

INFORMATION THEORY: Discrete messages, concept of amount of information and its properties. Average information, Entropy and its properties. Information rate, Mutual information and its properties. Electronics & Communication Engineering

UNIT V

SOURCE CODING: Introductions, Advantages, Shannon's theorem, Shanon-Fano coding, Huffman coding, efficiency calculations, channel capacity of discrete and analog Channels, capacity of a Gaussian channel, bandwidth –S/N trade off.

JAWAHARLAL NEHRUTECHNOLOGICALUNIVERSITY: KAKINADA KAKINADA-533003, Andhra Pradesh, India

R-13 Syllabus for ECE.JNTUK

UNIT VI

LINEAR BLOCK CODES: Introduction, Matrix description of Linear Block codes, Error detection and error

correction capabilities of Linear block codes, Hamming codes, Binary cyclic codes, Algebraic structure, encoding, syndrome calculation, BCH Codes.

CONVOLUTION CODES: Introduction, encoding of convolution codes, time domain approach, transform domain approach. Graphical approach: state, tree and trellis diagram decoding using Viterbial algorithm.

TEXT BOOKS:

- 1. Digital communications Simon Haykin, John Wiley, 2005
- 2. Principles of Communication Systems H. Taub and D. Schilling, TMH, 2003

REFERENCES:

- 1. Digital and Analog Communication Systems Sam Shanmugam, John Wiley, 2005.
- 2. Digital Communications John Proakis, TMH, 1983. Communication Systems Analog & Digital Singh & Sapre, TMH, 2004.
- 3. Modern Analog and Digital Communication B.P.Lathi, Oxford reprint, 3rd edition, 2004.